Simple Measure of Memory for Dynamical Processes Described by a Generalized Langevin Equation
نویسندگان
چکیده
منابع مشابه
Simple measure of memory for dynamical processes described by a generalized Langevin equation.
Memory effects are a key feature in the description of the dynamical systems governed by the generalized Langevin equation, which presents an exact reformulation of the equation of motion. A simple measure for the estimation of memory effects is introduced within the framework of this description. Numerical calculations of the suggested measure and the analysis of memory effects are also applie...
متن کاملEquilibration problem for the generalized Langevin equation
We consider the problem of equilibration of a single oscillator system with dynamics given by the generalized classical Langevin equation. It is well-known that this dynamics can be obtained if one considers a model where the single oscillator is coupled to an infinite bath of harmonic oscillators which are initially in equilibrium. Using this equivalence we first determine the conditions neces...
متن کاملThe generalized Langevin equation with Gaussian fluctuations
It is shown that all statistical properties of the generalized Langevin equation with Gaussian fluctuations are determined by a single, two-point correlation function. The resulting description corresponds with a stationary, Gaussian, non-Markovian process. Fokker-Planck-like equations are discussed, and it is explained how they can lead one to the erroneous conclusion that the process is nonst...
متن کاملLangevin Equation for the Density of a System of Interacting Langevin Processes
We present a simple derivation of the stochastic equation obeyed by the density function for a system of Langevin processes interacting via a pairwise potential. The resulting equation is considerably different from the phenomenological equations usually used to describe the dynamics of non conserved (Model A) and conserved (Model B) particle systems. The major feature is that the spatial white...
متن کاملNumerical integration of the extended variable generalized Langevin equation with a positive Prony representable memory kernel.
Generalized Langevin dynamics (GLD) arise in the modeling of a number of systems, ranging from structured fluids that exhibit a viscoelastic mechanical response, to biological systems, and other media that exhibit anomalous diffusive phenomena. Molecular dynamics (MD) simulations that include GLD in conjunction with external and/or pairwise forces require the development of numerical integrator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2005
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.95.200601